Preliminary comparison of tropical upper troposphere cirrus fraction between OMPS-LP, CALIOP, MLS, AIRS and MODIS 1.38µm

Mark Schoeberl STC

#### Why do we care?

- Cirrus fraction (CF) is of scientific interest
  - Cirrus is a greenhouse cloud
  - Cirrus fraction is predicted to change in response to warming
  - Cirrus fraction is a good model diagnostic
  - Cirrus fraction tells about physical processes associated with cloud nucleation
- Different CF products tell us different things
  - How does cirrus fraction vary with height?
  - How do "total" high cloud fraction products (MODIS, AIRS) compare with vertically resolved CF: OMPS, CALIOPSO, MLS

# **CF Resolution Comparison**

Vertical Resolution ---> **CALIPSO OMPS LP** MLS **AIRS MODIS** 

Horizontal Resolution --->

#### OMPS-LP CF > 12 km

January 2014



### CALIOP Cloud Fraction (Z > 12 km)



#### Integrated MLS ice product > 12 km



Integerated fraction > 0.0025 mg/m3

MLS has lower sensitivity to small ice particles

#### **AIRS Cirrus Fraction**



# MODIS 1.38 µm band

- Originally proposed to identify cirrus interference with other nadir products like ocean color – Ackerman et al.
- 1.38µm is in the middle of strong water vapor absorption bands
- However, the absorption is often not strong enough to block cloud reflectivity from lower altitudes.







## MODIS Cloud Fraction (1.36μm)





CALIOP Z>12

**MODIS** 

#### NITS

**AIRS** 

- MLS too many clouds north of Pacific ITCZ
- MODIS seeing clouds too deep?? (South of Australia)
- AIRS missing ITCZ

# Correlation Between Tropical Data Sets, January 2014

OMPS LP and CALIOP = 0.6

OMPS LP and AIRS = 0.78

OMPS LP and MLS = 0.53

OMPS LP and MODIS = 0.67

AIRS and MODIS = 0.82

MLS and AIRS = 0.63

# Summary

- Reasonable agreement between the various high cloud data sets – but correlations aren't perfect.
- Disagreements should tell us how to adjust the sensitivity of the OMPS-LP cloud algorithm radiance ratio trigger.
- More work to be done ....

Thanks to Matt Deland, Zhong Chen for OMPS-LP data